Cost-Effective and Easily Configurable High Voltage Motor Controllers for Automotive Use

sdmay25-26 Bryce Rega, Marek Jablonski, Gavin Patel, Jonah Frosch, Long Yu December 10th, 2024

Nathan Neihart (neihart@iastate.edu), Cheng Huang (chengh@iastate.edu)

Problem Statement

- There exists a market gap in lightweight EV motor controllers
 - Used in electric bikes and collegiate solar cars
- These unique applications have unique specs
 - Low RPM (0-1000)
 - High Torque (Direct Drive)
 - High/Medium Voltage (48-135V)
 - Medium Power (Peak ~7.5KW)
- Problem: Existing controllers
 - Are very expensive (~\$5k each)
 - Black boxes to those who use them
 - Notorious for having issues.

Electric bike in-hub motor ebikeling.com

PRISUM's solar car, P15 Eliana PRISUM Media Archive

Functional Requirements

- Operational
 - Spin Motor in either direction
 - Current and/or speed controlled
- Electrical
 - 0-25600rpm Electrical Rotation speed
 - 48-135VDC Power Input
 - 50A Bus Draw
 - 200A Peak Coil Current
 - High Torque Output
- Communication
 - CAN bus command/status IO
 - Used in large interconnected vehicles
 - GPIO interface
 - Simple Bare-bones operation

Mitsuba 2096-III Motor Marek Jablonski

CAN Node Diagram CAN bus - Wikipedia

Nonfunctional Requirements

- Compact and Lightweight
 - 200x200x100mm outer dimension
 - Less than 4kg
- Environmental Resistance
 - 0°-45°C Operating ambient
 - Water-resistant connectors
- Aesthetics
 - Useful Labeling
 - Professional Design
- User Experience
 - Comprehensive Documentation and Guides
 - External Configuration Utility

Mitsuba 2096C Controller Marek Jablonski

System configuration

Existing hookup Diagram Mitsuba M2096 Controller Manual

Other Considerations

- Open-Source Design
 - Removes Overhead from User Cost
 - Enables Cost cuts for resourceful Users
- Safety
 - Dangerous Voltages/Energy
 - Electrical Isolation
 - Energy Dissipation
 - Cautions/Warnings

https://www.flickr.com/photos/lintmachine/2333562855

High Voltage

Hazard of severe electrical shock or burn

De-energize unit before removing this cover

Example Hazard Label Safety in Motor Maintenance and Troubleshooting – Monolithic Power System

Project Overview

- Custom High Voltage Motor Controller
- Low Total cost for controller when compared to market options
- Develop a GUI for interfacing and configuring controller
- Compatible with many different applications

M2096 kit Mitsuba M2096 Controller Manual

STMicro SDK Wiki

In-hub Bicycle Motor LeafBike.com

Market Survey – Uniqueness

- Other options contain a few key flaws:
- Lack of proper documentation makes integrating motor controllers difficult
- Motor controllers for higher power applications have affordability issues
- Most motor controllers are either difficult to configure or do not allow for custom configuration

M2096 Motor and Controller Micro Mobility Products

WaveSculptor22 Motor Inverter Tritium Charging

48-72V Brushless Motor Speed Controller DC 1500W Scooter Controller Replacement for E-Bike Scooter Motor Controller

Potential Risks & Mitigation

- Prototyping Risks
 - Design Time Overruns
 - Setting aside additional time outside normal meeting hours to ensure work is being done
 - Test Motor Failure
 - We have backup hall sensors and additional motors and components for repairing damage
 - Development Board Damage
 - Incremental testing will be performed with proactive limits in place
- First Revision
 - Component Failure
 - Ensure most intensive use cases are properly simulated in LTSpice
 - Software Delay
 - Design multiple rev 1 prototypes to support our desired MCU and dev board
- Second Revision
 - Overspending Budget
 - \cdot $\,$ Purchase components in the first revision in bulk

High voltage run through PCBs

Overvoltage Damage

Resource/Cost Estimate

- Primary cost comes from the board and components
 Plan to hand solder components to board
- Development board and ST-Link were purchased
- Open-Source software to run on the board
- Free documentation on how to properly use the board
- End cost to the user would only be the board + components
- Overall cost around \$300 dollars

Reddit.com, u/Severe_Life1437

Project Milestones & Schedule

• Milestones

- Development board drives the motor
- Custom prototype drives motor with throttle and direction control
- Motor reliably runs (no regular faults)
- Motor controller meets requirements laid out by the client
- Project schedule
 - Milestone 1 was completed in the first week of November
 - Milestone 2 will be completed at the start of semester 2
 - * Milestone 3 should be completed shortly after Milestone 2 $\,$
 - Milestone 4 is planned to be complete in mid-March

Prototyping Phases

Development Board

Revision 1

• Get familiar with software via examples

• Setup hardware configurations

- Partially meet requirements
- Test hardware to learn for next revision
- Test basic custom software

• Completely meet requirements

Revision 2

• Final deliverable

Functional Decomposition

- Research
 - Select dev board and software prep
 - Research components
- Prototyping
 - Develop and test software on dev board
 - $\,\cdot\,$ Create schematic, then layout of PCB
 - Prototype software for custom $\ensuremath{\mathsf{PCB}}$
- Minimum Viable Product (MVP)
 - Hardware is functional and tested
 - Software is functional and tested
 - Revision 1 (MVP) is complete
- Repeat for revision 2

High Level Design

- Take inputs from a user throttle / braking and a DC voltage source for power
- Output a 3 phase sinusoidal waveform for driving motors
- Software drives the motor and receives data back through a HALL effect sensor in a feedback loop

Schematic

High Voltage Capacitor Bank Sheet

Top Level Schematic

MCU Schematic Sheet

16

Gate Driver Design

Gate Driver

Detailed Design

Software Design Diagram

AT SAM C21 J18	Primary		Secondary		Tertiary			
Function	Port & Pin	Peripheral	Port & Pin	Peripheral	Port & Pin	Peripheral	Debug?	
Phase H	PA08	TCC0 [0]	PA16	TCC0/2	PB30	TCC1 [2]	Pin	
Phase L	PA09	TCC0 [1]	PA17	TCC0/2	PB31	TCC1 [3]	Pin	
Phase H	PA10	TCC1 [0]	PA30	TCC1 [0]	PB30	TCC1 [2]	Pin	
Phase L	PA11	TCC1 [1]	PA31	TCC1 [1]	PB31	TCC1 [3]	Pin	
Phase H	PA12	TCC2 [0]	PA16	TCC0/2	PB30	TCC1 [2]	Pin	
Phase L	PA13	TCC2 [1]	PA17	TCC0/2	PB31	TCC1 [3]	Pin	
Bus Voltage	PA02	AIN2	PB00	AINO			Pin	
Phase Current	PA05	AIN5	PB01	AIN1			Pin	
Phase Current	PA06	AIN6	PB02	AIN2			Pin	
Phase Current	PA07	AIN7	PB03	AIN3			Pin	
1.5V Reference	PA03	VREFA					No	
3.5V Reference	PA04	VREFB					No	
HALL Sensor	PAOO	EXTINT[0]	PA14	EXTINT[14]			Pin	
HALL Sensor	PA01	EXTINT[1]	PA15	EXTINT[15]			Pin	
HALL Sensor	PA18	EXTINT[2]	PA02	EXTINT[2]			Pin	
CAN Tx	PA24	CAN0 TX	PB22	CAN0 TX	PB14	CAN1 TX	No	
CAN Rx	PA25	CANO RX	PB23	CANO RX	PB15	CAN1 RX	No	
DAC Analog Out	DNC		PA02	VOUT			N/A	
Sercom Data	PA16	SERCOM 1/3	PA22	SERCOM 3/5			Pin	
Sercom Clock	PA17	SERCOM 1/3	PA23	SERCOM 3/5			Pin	
Throttle ADC	PB00	AINO	PA08	AIN8	PB08	AIN2/4	Pin	
Timer or PWM H	PA14	TC4 [0]	PA18	TC4 [0]	PB08	TC0 [0]	N/A	
Timer or PWML	PA15	TC4 [1]	PA19	TC4 [1]	PB09	TC0 [1]	N/A	
Extra Button	PA19	EXTINT[3]	PA14	EXTINT[14]	PA15	EXTINT[15]	No	
Extra LED	PA14	EXTINT[14]	PA15	EXTINT[15]	PA19	EXTINT[3]	No	
Extra LED	PA15	EXTINT[15]	PA14	EXTINT[14]	PA19	EXTINT[3]	No	
Extra GPIO	PA22	EXTINT[6]	PB22	EXTINT[6]	PB12	EXTINT[12]	Pin	
Extra GPIO	PA23	EXTINT[7]	PB23	EXTINT[7]	PB13	EXTINT[13]	Pin	

MCU Pinout

Technology Platforms

- LT Spice for circuit testing and development
 - Free usage and we have common familiarity
- ST Motor Workbench & Libraries
 - Good for initial development, lots of customizability
 - Often poor documentation
- VSCode and PRISUM's Software Environment
 - Client's software environment for MCUs
 - Reliable and easy to use

Test Plan

- Development Board
 - Use to test motor parameters
 - Use to create testing plans
- LTSpice simulations of the gate driver
- Software Tests
 - Modularize code so it may be tested at every level
 - Include some unit testing to stress test
- Final Tests
 - Use power metrics on efficiency
 - Test system edge cases to ensure safety and reliability

Prototype Results

- Determined test motor parameters
 - Coil Inductance
 - Internal Resistance
 - Winding and Pole/Pair Scheme
- Too Low Torque
 - Could barely spin up motor
 - Frequent OC faults
- Control Scheme Issues
 - Not configured for this motor type
- Prototype Failed
 - Gate Driver internal failure
 - Necessary information gained beforehand

Current Status

- Software
 - Firmware layer implemented
 - High-level skeleton code written
 - Middle layers and implementing skeleton function in progress
- Hardware
 - Circuit level simulation compete, will run board level once layout is complete
 - Schematic completed, all components selected and footprints created.
 - Layout in progress

Revision 1 Status

Current Layout of Rev 1

Switching Characteristics simulation

3D View of Rev 1 Layout

Revision 1 Status

Software organization and status diagram

AT SAM C21 J18	Primary			
Function	Port & Pin	Peripheral		
Phase H	PA08	TCC0 [0]		
Phase L	PA09	TCC0 [1]		
Phase H	PA10	TCC1 [0]		
Phase L	PA11	TCC1 [1]		
Phase H	PA12	TCC2 [0]		
Phase L	PA13	TCC2 [1]		
Bus Voltage	PA02	AIN2		
Phase Current	PA05	AIN5		
Phase Current	PA06	AIN6		
Phase Current	PA07	AIN7		
1.5V Reference	PA03	VREFA		
3.5V Reference	PA04	VREFB		
HALL Sensor	PAOO	EXTINT[0]		
HALL Sensor	PA01	EXTINT[1]		
HALL Sensor	PA18	EXTINT[2]		
CAN Tx	PA24	CAN0 TX		
CAN Rx	PA25	CANO RX		

MCU Pinout

6-Step Phasor Diagram

Simplified Control Diagram

Contributions

Marek

Simulations and applications expertise

Bryce

Fixed dev-board

example code,

developed

firmware layer

Jonah

Component selection, Schematic design and Layout design

Gavin

Generated devboard example code, research & design for FOC control

Long

Reasearch and order parts, updated documents and websites

Next Semester

- Finish Revision 1
 - Finish the layout, order the board, and assemble the board
 - Implement the skeleton code and develop the "middle" motor layer of code
- Test Revision 1
 - Debug software and hardware
- Design Revision 2
 - Develop a schematic based on what was learned from revision 1
 - Scale everything up to meet requirements
- Assemble Revision 2
 - · Assembled as a final deliverable
- Final Delivery
 - Documentation and software interfacing included

Further Technical Details

Additional content to support what was covered in the high-level slides

Simulation schematic

SAM C21 J18 Pinout

AT SAM C21 J18	Primary		Secondary		Tertiary		
Function	Port & Pin	Peripheral	Port & Pin	Peripheral	Port & Pin	Peripheral	Debug?
Phase H	PA08	TCC0 [0]	PA16	TCC0/2	PB30	TCC1 [2]	Pin
Phase L	PA09	TCC0 [1]	PA17	TCC0/2	PB31	TCC1 [3]	Pin
Phase H	PA10	TCC1 [0]	PA30	TCC1 [0]	PB30	TCC1 [2]	Pin
Phase L	PA11	TCC1 [1]	PA31	TCC1 [1]	PB31	TCC1 [3]	Pin
Phase H	PA12	TCC2 [0]	PA16	TCC0/2	PB30	TCC1 [2]	Pin
Phase L	PA13	TCC2 [1]	PA17	TCC0/2	PB31	TCC1 [3]	Pin
Bus Voltage	PA02	AIN2	PB00	AINO			Pin
Phase Current	PA05	AIN5	PB01	AIN1			Pin
Phase Current	PA06	AIN6	PB02	AIN2			Pin
Phase Current	PA07	AIN7	PB03	AIN3			Pin
1.5V Reference	PA03	VREFA					No
3.5V Reference	PA04	VREFB					No
HALL Sensor	PA00	EXTINT[0]	PA14	EXTINT[14]			Pin
HALL Sensor	PA01	EXTINT[1]	PA15	EXTINT[15]			Pin
HALL Sensor	PA18	EXTINT[2]	PA02	EXTINT[2]			Pin
CAN Tx	PA24	CAN0 TX	PB22	CAN0 TX	PB14	CAN1 TX	No
CAN Rx	PA25	CAN0 RX	PB23	CAN0 RX	PB15	CAN1 RX	No
DAC Analog Out	DNC		PA02	VOUT			N/A
Sercom Data	PA16	SERCOM 1/3	PA22	SERCOM 3/5			Pin
Sercom Clock	PA17	SERCOM 1/3	PA23	SERCOM 3/5			Pin
Throttle ADC	PB00	AINO	PA08	AIN8	PB08	AIN2/4	Pin
Timer or PWM H	PA14	TC4 [0]	PA18	TC4 [0]	PB08	TC0 [0]	N/A
Timer or PWM L	PA15	TC4 [1]	PA19	TC4 [1]	PB09	TC0 [1]	N/A
Extra Button	PA19	EXTINT[3]	PA14	EXTINT[14]	PA15	EXTINT[15]	No
Extra LED	PA14	EXTINT[14]	PA15	EXTINT[15]	PA19	EXTINT[3]	No
Extra LED	PA15	EXTINT[15]	PA14	EXTINT[14]	PA19	EXTINT[3]	No
Extra GPIO	PA22	EXTINT[6]	PB22	EXTINT[6]	PB12	EXTINT[12]	Pin
Extra GPIO	PA23	EXTINT[7]	PB23	EXTINT[7]	PB13	EXTINT[13]	Pin

Field Oriented/Weakening Control

Figure out what this all means for our code

Schematic

Motor Reference Images

Controller Reference Images

37

Engineering Standards

- IEEE 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems
 - This standard outlines requirements for safely interconnecting distributed energy resources (like solar and wind) with electric power systems, focusing on performance, safety, and reliability.
- IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture
 - This standard defines a boundary-scan architecture for testing and debugging integrated circuits and circuit boards, allowing access to internal signals for easier diagnostics without physical probes.
- IEEE 1554 Standard for Software Engineering in the Life Cycle of Digital Systems
 - This standard provides guidelines for software engineering throughout the life cycle of digital systems, emphasizing structured practices for development, Detroit testing, and maintenance to improve software quality and reliability.